6.1 Areas Between Curves/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
\int_{1}^{-1}\left(\frac{2}{({x^2}+1)}\right) - \left(x^{2}\right) dx = \int_{1}^{-1}\left(2\cdot\frac{1}{(x^{2}+1)}\right)-\left(x^{2}\right) dx &= \left[(2\arctan(x)-\frac{x^{3}}{3})\right]\Bigg|_{-1}^{1} \\[2ex] | \int_{1}^{-1}\left(\frac{2}{({x^2}+1)}\right) - \left(x^{2}\right) dx = \int_{1}^{-1}\left(2\cdot\frac{1}{(x^{2}+1)}\right)-\left(x^{2}\right) dx &= \left[(2\arctan(x)-\frac{x^{3}}{3})\right]\Bigg|_{-1}^{1} \\[2ex] | ||
&= \left[(2\arctan(1)-\frac{(1)^{3}}{3})\right]-\left[((2\arctan(-1)-\frac{(-1)^{3}}{3})\right] \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |