5.5 The Substitution Rule/55: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
</math> | |||
<math> | |||
\begin{align} | |||
u &= \frac{t}{4} | |||
du &= \frac{1}{4}dt | |||
4du &=dx | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | |||
&= 4\cdot \tan^2(u) | |||
\end{align} | |||
</math> | </math> |
Revision as of 16:08, 4 October 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] &= 4\cdot \tan^2(u) \end{align} }