5.5 The Substitution Rule/55: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt  
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt  


&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]
= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]


&= 4\cdot \tan^2(u)
= 4\cdot \tan^2(u)




\end{align}
\end{align}
</math>
</math>

Revision as of 16:09, 4 October 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt = 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] = 4\cdot \tan^2(u) \end{align} }