5.5 The Substitution Rule/55: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt | \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
= 4\cdot \tan^2(u) |
Revision as of 16:10, 4 October 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] \end{align} }
= 4\cdot \tan^2(u)