5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>g(x)=\int_{3}^{x}e^{t^2-t}dt</math><br> | <math>g(x)=\int_{3}^{x}e^{t^2-t}dt</math><br> | ||
<math>\frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{ | <math>\frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}</math><br> | ||
Therefore, <math>g'(x)=e^{x^2-x}</math> | Therefore, <math>g'(x)=e^{x^2-x}</math> |
Revision as of 20:14, 23 August 2022
Therefore,