5.3 The Fundamental Theorem of Calculus/8: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
g(x)=\int_{3}^{x}e^{t^2-t}dt | g(x)=\int_{3}^{x}e^{t^2-t}dt \\ | ||
</math> | |||
<!-- | |||
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} | \frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} | ||
\text{Therefore, } g'(x)=e^{x^2-x} | \text{Therefore, } g'(x)=e^{x^2-x} | ||
</math> | </math> | ||
--> | |||
<math>\begin{align} | <math>\begin{align} |
Revision as of 20:32, 23 August 2022
Failed to parse (syntax error): {\displaystyle g(x)=\int_{3}^{x}e^{t^2-t}dt \\ }