5.3 The Fundamental Theorem of Calculus/28: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx  = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex]
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx  = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex]


&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex]
&= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\
 
&= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex]
 
&= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5}   
&= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5}   


\end{align}
\end{align}
</math>
</math>
<!--
3x+\frac{2x^{frac{5}{2}}}{5}}
-->

Revision as of 21:57, 23 August 2022