5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
FTC #1 | FTC #1 | ||
<math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b(x)*f(b(x))-a(x)*f(a(x))</math> | <math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math> | ||
<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math> | <math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math> |
Revision as of 01:58, 24 August 2022
FTC #1
or in other words of is
so
using the formula we get y=
which is=
or simplified to