5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math> | <math>G(x)=f^\prime(x)</math> or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math> | ||
<math>y=\int\limits_{1-3x}^{1}\frac{ | <math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math> | ||
so | so | ||
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)} | <math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}u^3, du</math> | ||
using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | ||
Line 19: | Line 19: | ||
<math>\int\limits_{a}^{b}f(x)dx</math> is equal to <math>F(b)-F(a)</math> Where F is the antiderivative of f such that <math>F^\prime=f</math> | <math>\int\limits_{a}^{b}f(x)dx</math> is equal to <math>F(b)-F(a)</math> Where F is the antiderivative of f such that <math>F^\prime=f</math> | ||
<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math> | |||
<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math> | <math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math> |
Revision as of 02:21, 24 August 2022
FTC #1
or in other words of is
so
using the formula we get y=
which is equal to
which is=
or simplified to
FTC #2
is equal to Where F is the antiderivative of f such that