5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>
<math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}</math> of <math>\int\limits_{a(x)}^{b(x)}F(x)dx</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>


<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math>
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>


so
so
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}x^3, dx</math>
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}u^3, du</math>


using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>
using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>
Line 19: Line 19:


<math>\int\limits_{a}^{b}f(x)dx</math> is equal to <math>F(b)-F(a)</math> Where F is the antiderivative of f such that <math>F^\prime=f</math>
<math>\int\limits_{a}^{b}f(x)dx</math> is equal to <math>F(b)-F(a)</math> Where F is the antiderivative of f such that <math>F^\prime=f</math>
<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math>


<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math>
<math>y=\int\limits_{1-3x}^{1}\frac{x^3}{(1+u^2)} dx</math>

Revision as of 02:21, 24 August 2022

FTC #1

or in other words of is

so

using the formula we get y=

which is equal to

which is=

or simplified to 


FTC #2

is equal to Where F is the antiderivative of f such that