∫ ( 3 x − 2 ) 20 d x {\displaystyle \int (3x-2)^{20}dx}
u = 3 x − 2 d u = 3 d x 1 3 d u = d x {\displaystyle {\begin{aligned}u&=3x-2\\[2ex]du&=3dx\\[2ex]{\frac {1}{3}}du&=dx\\[2ex]\end{aligned}}}
∫ ( u ) 20 / f r a c 1 3 d u = ∫ ( d u ) sin ( u ) = ∫ sin ( u ) d u = − cos ( u ) + C = − cos ( ln ( x ) ) + C {\displaystyle {\begin{aligned}\int (u)^{20}/frac{1}{3}du\\[2ex]&=\int (du)\sin {(u)}=\int \sin {(u)}du\\[2ex]&=-\cos {(u)}+C\\[2ex]&=-\cos {(\ln {(x)})}+C\end{aligned}}}