∫ z 2 1 + z 3 3 d z ∫ t d t t 2 2 < p o e m > S u b s t i t u t e b a c k t = 1 + z 3 3 < / p o e m > = ( 1 + z 3 ) 2 3 2 + C {\displaystyle {\begin{aligned}&\int {\cfrac {z^{2}}{\sqrt[{3}]{1+z^{3}}}}dz\\[2ex]&\int {tdt}\\[2ex]&{\cfrac {t^{2}}{2}}\\[2ex]&<poem>Substitutebackt={\sqrt[{3}]{1+z^{3}}}</poem>\\[2ex]&={\cfrac {\sqrt[{3}]{(1+z^{3})^{2}}}{2}}+C\end{aligned}}}