∫ ( x x + 2 4 ) d x {\displaystyle \int _{}^{}\left({\frac {x}{\sqrt[{4}]{x+2}}}\right)dx}
u = x + 2 d u = 1 d x u − 2 = x {\displaystyle {\begin{aligned}u&=x+2\\[2ex]du&=1dx\\[2ex]u-2&=x\\[2ex]\end{aligned}}}
∫ ( x x + 2 4 ) d x = ∫ ( u − 2 u 4 ) = ∫ ( u ( 4 u ) − 2 ( 4 u ) ) {\displaystyle {\begin{aligned}\int _{}^{}\left({\frac {x}{\sqrt[{4}]{x+2}}}\right)dx&=\int _{}^{}\left({\frac {u-2}{\sqrt[{4}]{u}}}\right)&=\int _{}^{}({\frac {u}{{\sqrt[{4}]{(}}u)}}-{\frac {2}{{\sqrt[{4}]{(}}u)}})\end{aligned}}}