∫ 1 2 x x − 1 d x {\displaystyle \int _{1}^{2}x{\sqrt {x-1}}dx}
u = x − 1 u + 1 = x d u = 1 d x d u = d x {\displaystyle {\begin{aligned}u&=x-1\\u+1&=x\\[2ex]du&=1dx\\[2ex]du&=dx\end{aligned}}}
∫ 1 2 x x − 1 d x = ∫ 0 1 ( u + 1 ) u d u = ∫ 0 1 ( u + 1 ) ( u ) = ∫ 0 1 u 3 2 + u d u = 2 5 U 5 2 + 2 3 b i g g u 3 2 | 0 1 = 2 5 + 2 3 = 16 15 {\displaystyle {\begin{aligned}\int _{1}^{2}x{\sqrt {x-1}}\,dx&=\int _{0}^{1}(u+1){\sqrt {u}}\,du=\int _{0}^{1}(u+1)({\sqrt {u}})=\int _{0}^{1}u^{\frac {3}{2}}+{\sqrt {u}}du\\[2ex]&={\frac {2}{5}}U^{\frac {5}{2}}+{\frac {2}{3}}biggu^{\frac {3}{2}}|_{0}^{1}={\frac {2}{5}}+{\frac {2}{3}}\\[2ex]&={\frac {16}{15}}\\[2ex]\end{aligned}}}