y = 1 + x y = 3 + x 3 {\displaystyle {\begin{aligned}&\color {green}\mathbf {y=1+{\sqrt {x}}} &\color {purple}\mathbf {y={\frac {3+x}{3}}} \\\\\end{aligned}}}
1 + x = 3 + x 3 1 + x − 3 + x 3 = 0 3 + 3 x 3 − 3 + x 3 = 0 3 + 3 x − 3 + x = 0 3 x + x = 0 3 x = − x 9 x = x 2 9 x − x 2 = 0 x ( 9 − x ) = 0 x = 0 , 9 {\displaystyle {\begin{aligned}&1+{\sqrt {x}}={\frac {3+x}{3}}\\&1+{\sqrt {x}}-{\frac {3+x}{3}}=0\\&{\frac {3+3{\sqrt {x}}}{3}}-{\frac {3+x}{3}}=0\\&3+3{\sqrt {x}}-3+x=0\\&3{\sqrt {x}}+x=0\\&3{\sqrt {x}}=-x\\&9x=x^{2}\\&9x-x^{2}=0\\&x(9-x)=0\\&x=0,9\end{aligned}}}
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}{3}