∫ 0 13 d x ( 1 + 2 x ) 2 3 {\displaystyle \int _{0}^{13}{\frac {dx}{\sqrt[{3}]{(1+2x)^{2}}}}} = ∫ 0 13 1 2 3 t 2 d t {\displaystyle \int _{0}^{13}{\frac {1}{2^{3}{\sqrt {t^{2}}}}}dt} = 1 2 ∫ 0 13 1 t 2 3 d t {\displaystyle {\frac {1}{2}}\int _{0}^{13}{\frac {1}{\sqrt[{3}]{t^{2}}}}dt}