y = x 2 y = 2 ( x 2 + 1 ) {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=x^{2}} &\color {royalblue}\mathbf {y={\frac {2}{({x^{2}}+1)}}} \\\end{aligned}}}
∫ 1 − 1 ( 2 ( x 2 + 1 ) ) − ( x 2 ) d x = ∫ 1 − 1 ( 2 ⋅ 1 ( x 2 + 1 ) ) − ( x 2 ) d x = [ 2 a r c t a n ( x ) ] {\displaystyle \int _{1}^{-1}\left({\frac {2}{({x^{2}}+1)}}\right)-\left(x^{2}\right)dx=\int _{1}^{-1}\left(2\cdot {\frac {1}{(x^{2}+1)}}\right)-\left(x^{2}\right)dx=\left[2arctan(x)\right]}