5.3 The Fundamental Theorem of Calculus/28
< 5.3 The Fundamental Theorem of Calculus
Jump to navigation
Jump to search
Revision as of 21:46, 23 August 2022 by Dvaezazizi@laalliance.org (talk | contribs)
Failed to parse (unknown function "\vspace"): {\displaystyle \begin{align} \int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\ \vspace{2mm} &= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\ &= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\ &= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5} \end{align} }