∫ cos 3 x d x = sin x − 1 3 sin 3 x + C d d x [ sin x − 1 3 ⋅ 3 sin x 2 cos x + 0 ] {\displaystyle {\begin{aligned}&\int \cos ^{3}xdx=\sin {x}-{\frac {1}{3}}\sin ^{3}x+C&{\frac {d}{dx}}{[\sin {x}-{\frac {1}{3}}\cdot 3\sin {x^{2}}\cos {x}+0]}\end{aligned}}}