∫ 1 64 1 + x 3 x d x {\displaystyle \int _{1}^{64}{\frac {1+{\sqrt[{3}]{x}}}{\sqrt {x}}}dx}
∫ 1 64 1 x 1 / 2 {\displaystyle \int _{1}^{64}{\frac {1}{x^{1/2}}}} + ∫ 1 64 x 1 / 3 x 1 / 2 {\displaystyle \int _{1}^{64}{\frac {x^{1/3}}{x^{1/2}}}}
∫ 1 64 x − 1 / 2 + x 1 / 3 − 1 / 2 {\displaystyle \int _{1}^{64}x^{-1/2}+x^{1/3-1/2}} = ∫ 1 64 x − 1 / 2 + x − 1 / 6 {\displaystyle \int _{1}^{64}x^{-1/2}+x^{-1/6}}
Add one to the exponents and divide by the new exponent
∫ 1 64 x 1 / 2 1 2 + x 5 / 6 5 6 {\displaystyle \int _{1}^{64}{\frac {x^{1/2}}{\frac {1}{2}}}+{\frac {x^{5/6}}{\frac {5}{6}}}}