( − 2 2 , 2 2 ) {\displaystyle \left(-{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}\right)}
sin ( t ) = 2 2 csc ( t ) = − 2 3 ⋅ 3 3 = 2 3 3 cos ( t ) = − 2 2 sec ( t ) = 2 1 = 2 tan ( t ) = 2 2 − 2 2 ⋅ 2 = − 2 2 = − 1 cot ( t ) = − 1 3 = − 1 3 ⋅ 3 3 = 3 3 {\displaystyle {\begin{aligned}\sin {(t)}&={\frac {\sqrt {2}}{2}}&\csc {(t)}&=-{\frac {2}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {(t)}&=-{\frac {\sqrt {2}}{2}}&\sec {(t)}&={\frac {2}{1}}=2\\[2ex]\tan {(t)}&={\frac {\frac {\sqrt {2}}{2}}{-{\frac {\sqrt {2}}{2}}}}\cdot {2}=-{\frac {\sqrt {2}}{\sqrt {2}}}=-1&\cot {(t)}&=-{\frac {1}{\sqrt {3}}}=-{\frac {1}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {\sqrt {3}}{3}}\\[2ex]\end{aligned}}}