g ( y ) = ∫ 2 y t 2 sin ( t ) d t {\displaystyle g(y)=\int _{2}^{y}t^{2}\sin {(t)}dt}
d d y [ g ( y ) ] = d d y [ ∫ 2 y t 2 sin ( t ) d t ] < m a t h >= 1 ⋅ ( y 2 s i n ( y ) ) − 0 ⋅ ( 2 2 s i n ( 2 ) ) {\displaystyle {\frac {d}{dy}}\left[g(y)\right]={\frac {d}{dy}}\left[\int _{2}^{y}t^{2}\sin {(t)}dt\right]<math>=1\cdot (y^{2}sin{(y)})-0\cdot (2^{2}sin{(2)})} = y 2 s i n ( y ) {\displaystyle =y^{2}sin{(y)}}