∫ a + b x 2 3 a x + b x 3 d x {\displaystyle \int {\frac {a+bx^{2}}{\sqrt {3ax+bx^{3}}}}dx}
u = 3 a x + b x 3 d u = ( 3 a + 3 b x 2 ) d x 1 3 d u = ( a + b x 2 ) d x {\displaystyle {\begin{aligned}u&=3ax+bx^{3}\\[2ex]du&=(3a+3bx^{2})dx\\[2ex]{\frac {1}{3}}du&=(a+bx^{2})dx\\[2ex]\end{aligned}}}
∫ a + b x 2 3 a x + b x 3 d x = ∫ 1 u d u = ∫ ( 1 x d x ) sin ( ln ( x ) ) = ∫ ( d u ) sin ( u ) = ∫ sin ( u ) d u = − cos ( u ) + C = − cos ( ln ( x ) ) + C {\displaystyle {\begin{aligned}\int {\frac {a+bx^{2}}{\sqrt {3ax+bx^{3}}}}dx&=\int {\frac {1}{\sqrt {u}}}du=\int \left({\frac {1}{x}}dx\right)\sin {(\ln {(x)})}\\[2ex]&=\int (du)\sin {(u)}=\int \sin {(u)}du\\[2ex]&=-\cos {(u)}+C\\[2ex]&=-\cos {(\ln {(x)})}+C\end{aligned}}}