g ( y ) = ∫ 2 y t 2 sin ( t ) d t < m a t h >= 1 ⋅ ( y 2 s i n ( y ) ) − 0 ⋅ ( 2 2 s i n ( 2 ) ) < m a t h >= y 2 s i n ( y ) {\displaystyle g(y)=\int _{2}^{y}t^{2}\sin {(t)}dt<math>=1\cdot (y^{2}sin{(y)})-0\cdot (2^{2}sin{(2)})<math>=y^{2}sin{(y)}}