∫ 1 1 − x 2 u = ∫ 1 u d u = ln | u | + c = ln | arcsin x | + c {\displaystyle \int {\frac {1}{{\sqrt {1-x^{2}}}u}}=\int {\frac {1}{u}}du=\ln |u|+c=\ln |\arcsin {x}|+c}
u = arcsin x d u = 1 1 − x 2 d x {\displaystyle {\begin{aligned}u&=\arcsin {x}\\[2ex]du&={\frac {1}{\sqrt {1-x^{2}}}}dx\\[2ex]\end{aligned}}}