y = x + 1 y = 9 − x 2 x = − 1 x = 2 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=x+1} &\color {royalblue}\mathbf {y=9-x^{2}} \\&x=-1&x=2\\\end{aligned}}}
∫ − 1 2 ( ( 9 − x 2 ) − ( x + 1 ) ) d x = [ 9 x − x 3 3 − x 2 2 − x ] | − 1 2 = [ 9 ( 2 ) − ( 2 ) 3 3 − ( 2 ) 2 2 − ( 2 ) {\displaystyle \int _{-1}^{2}((9-x^{2})-(x+1))dx=[9x-{\frac {x^{3}}{3}}-{\frac {x^{2}}{2}}-x]{\Bigg |}_{-1}^{2}=[9(2)-{\frac {(2)^{3}}{3}}-{\frac {(2)^{2}}{2}}-(2)}