∫ cos 3 ( θ ) sin ( θ ) d θ ) , u = cos ( θ ) {\displaystyle \int \cos ^{3}{(\theta )}\sin {(\theta )}d{\theta )}{\text{,}}\quad u=\cos {(\theta )}}
u = cos ( θ ) d u = − sin ( θ ) d ( θ ) − d u = sin ( θ ) d ( θ ) {\displaystyle {\begin{aligned}u&=\cos {(\theta )}\\[2ex]du&=-\sin {(\theta )}d{(\theta )}\\[2ex]-du&=\sin {(\theta )}d{(\theta )}\end{aligned}}}