y = tan ( x ) y = 2 sin ( x ) x = − π 3 x = π 3 {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\tan(x)} &\color {royalblue}\mathbf {y=2\sin(x)} \\&x=-{\frac {\pi }{3}}&x={\frac {\pi }{3}}\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx}
tan ( x ) = 2 sin ( x ) tan ( x ) − 2 sin ( x ) = 0 x = 0 {\displaystyle {\begin{aligned}\tan(x)&=2\sin(x)\\\tan(x)-2\sin(x)&=0\\x&=0\\\end{aligned}}}
∫ − π 3 π 3 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x = ∫ − π 3 0 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x + ∫ 0 π 3 [ ( 2 sin ( x ) ) − ( tan ( x ) ) ] d x = 2 − ln ( 2 ) − 1 − 1 − ln ( 2 ) + 2 = − 2 ln ( 2 ) − 2 + 4 = − 2 ln ( 2 ) + 2 {\displaystyle \int _{-{\frac {\pi }{3}}}^{\frac {\pi }{3}}\left[(\tan(x))-(2\sin(x))\right]dx=\int _{-{\frac {\pi }{3}}}^{0}\left[(\tan(x))-(2\sin(x))\right]dx+\int _{0}^{\frac {\pi }{3}}\left[(2\sin(x))-(\tan(x))\right]dx=2-\ln(2)-1-1-\ln(2)+2=-2\ln(2)-2+4=-2\ln(2)+2}
∫ − π 3 0 [ ( tan ( x ) ) − ( 2 sin ( x ) ) ] d x = [ ln | sec ( x ) | + 2 cos ( x ) ] | − π 3 0 = [ ln | sec ( 0 ) | + 2 cos ( 0 ) ] − [ ln | sec ( − π 3 ) + 2 cos ( − π 3 ) | ] = [ 0 + 2 ] − [ ln ( 2 ) − 2 ( 1 2 ) ] = 2 − ln ( 2 ) − 1 = 2 − ln ( 2 ) − 1 {\displaystyle {\begin{aligned}\int _{-{\frac {\pi }{3}}}^{0}\left[(\tan(x))-(2\sin(x))\right]dx\\[2ex]&=\left[\ln |\sec(x)|+2\cos(x)\right]{\Bigg |}_{-{\frac {\pi }{3}}}^{0}\\[2ex]&=\left[\ln |\sec(0)|+2\cos(0)\right]-\left[\ln |\sec(-{\frac {\pi }{3}})+2\cos(-{\frac {\pi }{3}})|\right]\\[2ex]&=\left[0+2\right]-\left[\ln(2)-2({\frac {1}{2}})\right]=2-\ln(2)-1\\[2ex]&=2-\ln(2)-1\end{aligned}}}
∫ 0 π 3 [ ( 2 sin ( x ) ) − ( tan ( x ) ) ] d x = [ − 2 cos ( x ) − ln | sec ( x ) | ] | 0 π 3 = [ − 2 cos ( π 3 ) − ln | sec ( π 3 ) | ] + [ 2 cos ( 0 ) + ln | sec ( 0 ) | ] = [ ( − 2 ) ( 1 / 2 ) − ln ( 2 ) ] + [ 2 + 0 ] = − 1 − ln ( 2 ) + 2 = − 1 − ln ( 2 ) + 2 {\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{3}}\left[(2\sin(x))-(\tan(x))\right]dx\\[2ex]&=\left[-2\cos(x)-\ln |\sec(x)|\right]{\Bigg |}_{0}^{\frac {\pi }{3}}\\[2ex]&=\left[-2\cos({\frac {\pi }{3}})-\ln |\sec({\frac {\pi }{3}})|\right]+\left[2\cos(0)+\ln |\sec(0)|\right]\\[2ex]&=\left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right]=-1-\ln(2)+2\\[2ex]&=-1-\ln(2)+2\end{aligned}}}
Note: ∫ tan ( x ) d x = ∫ sin ( x ) cos ( x ) d x = ln | sec ( x ) | + C {\displaystyle {\text{Note: }}\int \tan(x)dx=\int {\frac {\sin(x)}{\cos(x)}}dx=\ln |\sec(x)|+C}
u = cos ( x ) d u = − sin ( x ) − d u = sin ( x ) d x {\displaystyle {\begin{aligned}u&=\cos(x)\\[2ex]du&=-\sin(x)\\[2ex]-du&=\sin(x)dx\end{aligned}}}
− ∫ ( 1 u ) d x = − ln | u | + C = ln | cos ( x ) − 1 | + C = ln | 1 c o s ( x ) | + C = ln | sec ( x ) | + C {\displaystyle {\begin{aligned}-\int ({\frac {1}{u}})dx&=-\ln |u|+C&=\ln |\cos(x)^{-1}|+C&=\ln |{\frac {1}{cos(x)}}|+C&=\ln |\sec(x)|+C\end{aligned}}}