y = sin ( π x 2 ) y = x {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\sin({\frac {\pi x}{2}})} &\color {royalblue}\mathbf {y=x} \\\end{aligned}}}
sin ( x π 2 ) = x x = 0 x = 1 {\displaystyle {\begin{aligned}\sin({\frac {x\pi }{2}})&=x\\x&=0\\x&=1\\\end{aligned}}}
∫ 0 1 ( sin ( x π 2 ) − x ) d x = ∫ 0 1 ( sin ( π 2 ) ) d x − ∫ 0 1 ( x ) d x = 2 π − 1 2 {\displaystyle \int _{0}^{1}\left(\sin \left({\frac {x\pi }{2}}\right)-x\right)dx=\int _{0}^{1}\left(\sin \left({\frac {\pi }{2}}\right)\right)dx-\int _{0}^{1}(x)dx={\frac {2}{\pi }}-{\frac {1}{2}}}
∫ 0 1 ( sin ( x π 2 ) ) d x u = x π 2 d u = π 2 d x 2 π d u = d x {\displaystyle {\begin{aligned}\int _{0}^{1}\left(\sin \left({\frac {x\pi }{2}}\right)\right)dx\\u={\frac {x\pi }{2}}\\du={\frac {\pi }{2}}dx\\{\frac {2}{\pi }}du=dx\\\end{aligned}}}
New upper limit: ( 0 ) π 2 = 0 {\displaystyle {\frac {(0)\pi }{2}}=0}
New lower limit: ( 1 ) π 2 = π 2 {\displaystyle {\frac {(1)\pi }{2}}={\frac {\pi }{2}}}
∫ 0 1 ( sin ( x π 2 ) ) d x = 2 π ∫ 0 π 2 sin ( u ) d u = 2 π [ − cos ( u ) ] | 0 π 2 = 2 π [ − cos ( π 2 ) + cos ( 0 ) ] = 2 π [ 0 + 1 ] = 2 π {\displaystyle {\begin{aligned}\int _{0}^{1}\left(\sin \left({\frac {x\pi }{2}}\right)\right)dx&={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\sin(u)du\\&={\frac {2}{\pi }}\left[-\cos(u)\right]{\Bigg |}_{0}^{\frac {\pi }{2}}\\&={\frac {2}{\pi }}\left[-\cos({\frac {\pi }{2}})+\cos(0)\right]\\&={\frac {2}{\pi }}[0+1]={\frac {2}{\pi }}\\\end{aligned}}}
∫ 0 1 x d x = [ x 2 2 ] | 0 1 = 1 2 − 0 = 1 2 {\displaystyle {\begin{aligned}\int _{0}^{1}xdx&=\left[{\frac {x^{2}}{2}}\right]{\Bigg |}_{0}^{1}\\&={\frac {1}{2}}-0={\frac {1}{2}}\\\end{aligned}}}