2 π 3 ⇒ ( − 1 2 , 3 2 ) {\displaystyle {\frac {2\pi }{3}}\Rightarrow \left(-{\frac {1}{2}},{\frac {\sqrt {3}}{2}}\right)}
sin ( 2 π 3 ) = 3 2 csc ( 2 π 3 ) = 1 3 2 ⋅ 2 = 2 3 ⋅ 3 = 2 3 3 cos ( 2 π 3 ) = − 1 2 sec ( 2 π 3 ) = 1 − 1 2 ⋅ 2 = − 2 1 = − 2 tan ( 2 π 3 ) = 3 2 − 1 2 ⋅ 2 = − 3 1 = − 3 cot ( 2 π 3 ) = − 1 2 3 2 = − 1 3 ⋅ 3 = − 3 3 {\displaystyle {\begin{aligned}\sin {\left({\frac {2\pi }{3}}\right)}&={\frac {\sqrt {3}}{2}}&\csc {\left({\frac {2\pi }{3}}\right)}&={\frac {1}{\frac {\sqrt {3}}{2}}}\cdot {2}={\frac {2}{\sqrt {3}}}\cdot {\sqrt {3}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {2\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {2\pi }{3}}\right)}&={\frac {1}{-{\frac {1}{2}}}}\cdot {2}=-{\frac {2}{1}}=-2\\[2ex]\tan {\left({\frac {2\pi }{3}}\right)}&={\frac {\frac {\sqrt {3}}{2}}{-{\frac {1}{2}}}}\cdot {2}=-{\frac {\sqrt {3}}{1}}=-{\sqrt {3}}&\cot {\left({\frac {2\pi }{3}}\right)}&={\frac {-{\frac {1}{2}}}{\frac {\sqrt {3}}{2}}}=-{\frac {1}{\sqrt {3}}}\cdot {\sqrt {3}}=-{\frac {\sqrt {3}}{3}}\\[2ex]\end{aligned}}}