Calculus J. Stewart - 6th Edition

From Burton Tech. Points Wiki
Jump to navigation Jump to search

Limits and Derivatives[edit]

2.1 The Tangent and Velocity Problems
2.2 The Limit of a Function
2.3 Calculating Limits Using Limit Laws
2.5 Continuity
2.6 Limits at Infinity; Horizontal Asymptotes
2.7 Derivatives and Rates of Change
2.8 The Derivative as a Function

Differentiation Rules[edit]

3.1 Derivatives of Polynomials and Exponential Functions
3.2 The Product and Quotient Rules
3.3 Derivatives of Trigonometric Functions
3.4 The Chain Rule
3.5 Implicit Differentiation
3.6 Derivatives of Logarithmic Functions
3.7 Rates of Change in the Natural and Social Sciences
3.8 Exponential Growth and Decay
3.9 Related Rates
3.10 Linear Approximations and Differentials

Applications of Differentiation[edit]

4.1 Maximum and Minimum Values
4.2 The Mean Value Theorem
4.3 How Derivatives Affect the Shape of a Graph
4.4 Indeterminate Forms and L'Hospital's Rule
4.8 Newton's Method
4.9 Antiderivatives

Integrals[edit]

5.1 Areas and Distances
5.2 The Definite Integral
5.3 The Fundamental Theorem of Calculus
5.4 Indefinite Integrals and the Net Change Theorem
5.5 The Substitution Rule

Applications of Integrals[edit]

6.1 Areas Between Curves
6.2 Volumes
6.5 Average Value of a Function

Techniques of Integration[edit]

Further Applications of Integration[edit]

Differential Equations[edit]

Parametric Equations and Polar Coordinates[edit]

Infinite Sequences and Series[edit]