Math

From Burton Tech. Points Wiki
Jump to navigation Jump to search

Basics[edit]

To render any math equation, the math equation must be between <math></math> i.e., <math>f(x)=x^2</math> gives .

Common math commands[edit]

Superscript & Subscript[edit]

Superscript: <math>x^{5+y}</math> gives
Subscript: <math>x_{5+t}</math> gives
Together: <math>x_{5+t}^{5+y}</math> gives

Fractions, radicals and brackets[edit]

Fractions: <math>\frac{1}{x}</math> gives
Bad brackets, parentheses, etc.: <math>(\frac{1}{x})^3</math> gives
Correct brackets, parentheses, etc.: <math>\left(\frac{1}{x}\right)^3</math> gives
Square root: <math>\sqrt{x+1}</math> gives

General radical: <math>\sqrt[3]{64}=4</math> gives

Trig. & Log Functions[edit]

Sin, cos, tan, etc.: <math>\sin{(\theta)}</math> gives
Arcsin, arccos, arctan, etc.: <math>\arcsin{(\theta)}</math> gives
Log: <math>\log_{5}{5^2}=2</math> gives
Ln: <math>\ln{e^3}=3</math> gives

Calculus[edit]

Sum: <math>\sum_{i=1}^{n}i=\frac{n(n+1)}{2}</math> gives

Limit: <math>\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math> gives

Derivative: <math>\frac{d}{dx}\left[\frac{1}{x}\right]=-\frac{1}{x^2}</math> gives

Integral: <math>\int_{1}^{x+1}\frac{1}{r}dr</math> gives

Limit bar: <math>\bigg|_{0}^{1}</math> gives

Advanced[edit]

Sometimes it might be necessary to break up and align a long equation such as:

To do this use &= where the equation = should align and put \begin{align} and \end{align} at the start and end of <math></math>. Finally use \\[2ex] to create the proper space between the lines (if they're too close) and to push the rest of the equation to the next line. The code below renders what is seen above:

<math>
\begin{align}

\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx = \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx  = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\[2ex]

&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\tfrac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{\frac{5}{2}}}{5}\bigg|_{0}^{1} \\[2ex]

&= \left[3(1)+\frac{2(1)^{5/2}}{5}\right]-\left[3(0)+\frac{2(0)^{5/2}}{5}\right] \\[2ex]

&= 3+\frac{2}{5} = \frac{15}{5}+\frac{2}{5} = \frac{17}{5}  

\end{align}
</math>