5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math> | <math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math> | ||
so | so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | ||
using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | |||
which is equal to <math>(3)*f(1-3x)</math> | which is equal to <math>(3)*f(1-3x)</math> | ||
which is=<math>3*(1-3x)^3 | which is=<math>3*\frac{(1-3x)^3}{(1+(1-3x)^2)}</math> | ||
or simplified to <math>\frac{3*(1-3x)^3}{(1+(1-3x)^2)}</math> | or simplified to <math>\frac{3*(1-3x)^3}{(1+(1-3x)^2)}</math> | ||