5.3 The Fundamental Theorem of Calculus/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \int_{0}^\frac{\pi}{4}sec^{2}(t)dt= tan(\frac{\pi}{4})-tan(0)=1-0=1 | <math> \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \int_{0}^\frac{\pi}{4}\sec^{2}(t)dt= tan\left(\frac{\pi}{4}\right)-tan(0)=1-0=1 | ||
</math> | </math> |
Revision as of 21:23, 6 September 2022
Therefore,
(Use FTC #2,)