5.3 The Fundamental Theorem of Calculus/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>  
<math>  
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
</math>
</math>

Revision as of 21:24, 6 September 2022

Failed to parse (syntax error): {\displaystyle \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1 }