5.3 The Fundamental Theorem of Calculus/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1 | \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1 | ||
</math> | </math> |
Revision as of 21:24, 6 September 2022