5.3 The Fundamental Theorem of Calculus/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/31" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math> \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \int_{0}^\frac{\pi}{4}\sec^{2}(t)dt= tan\left(\frac{\pi}{4}\right)-tan(0)=1-0=1
<math>  
 
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
</math>
</math>
Therefore, <math> \int_{0}^\frac{\pi}{4}sec^{2}(t)dt = 1 </math>
(Use FTC #2,) <math> \int_{a}^{b}f(x)dt = F(b)-F(a) </math>

Latest revision as of 21:25, 6 September 2022