5.3 The Fundamental Theorem of Calculus/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt</math> <math> = tan(\frac{pi}{4})-tan(0)</math> <math> = 1-0 = 1</math>")
 
m (Protected "5.3 The Fundamental Theorem of Calculus/31" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\int_{0}^{\frac{pi}{4}}\sec^2(t)dt</math>
<math>  
 
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1
<math> = tan(\frac{pi}{4})-tan(0)</math>
</math>
 
<math> = 1-0 = 1</math>

Latest revision as of 21:25, 6 September 2022