6.2 Trigonometric Functions: Unit Circle Approach/47: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 4: Line 4:
\begin{align}
\begin{align}


\sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}}\\[2ex]
\sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex]


\cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{1}{-\frac{1}{2}} \cdot{2} = -\frac{2}{1} = -2 \\[2ex]  


\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}


& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]
& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3}} = -\frac{\sqrt{3}}{3}  \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 21:00, 1 September 2022