5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/25" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(13 intermediate revisions by 2 users not shown)
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex]
\int_{-2}^{2}({3u+1})^2 du &= \int(9u^2+6u+1)du \\[2ex]


= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
&= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex]
 
&= [3(2)^{3} + 3(2)^2 + 2] - [3(-2)^3 + 3(-2)^2 -2] \\[2ex]
= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex]
&= {52} \\[2ex]
 
= {52}  


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:40, 21 September 2022