6.1 Areas Between Curves/22: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(38 intermediate revisions by the same user not shown) | |||
Line 18: | Line 18: | ||
<math> | <math> | ||
\int_{0}^{1} \left | \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx = \int_{0}^{1}\left(\sin\left(\frac{\pi}{2}\right)\right)dx - \int_{0}^{1} (x)dx = \frac{2}{\pi} - \frac{1}{2} | ||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right)dx \\ | |||
u = \frac{x\pi}{2} \\ | |||
du = \frac{\pi}{2}dx \\ | |||
\frac{2}{\pi}du =dx \\ | |||
\end{align} | |||
</math> | |||
New upper limit: <math>\frac{(0)\pi}{2}=0 </math> | |||
New lower limit: <math>\frac{(1)\pi}{2} = \frac{\pi}{2} </math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right) dx &= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(u) du \\ | |||
&= \frac{2}{\pi} \left[-\cos(u)\right]\Bigg|_{0}^{\frac{\pi}{2}} \\ | |||
&= \frac{2}{\pi} \left[-\cos(\frac{\pi}{2})+\cos(0)\right] \\ | |||
&= \frac{2}{\pi} [0+1] = \frac{2}{\pi} \\ | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{0}^{1} x dx &= \left[\frac{x^2}{2}\right]\Bigg|_{0}^{1} \\ | |||
&= \frac{1}{2} - 0 = \frac{1}{2} \\ | |||
\end{align} | |||
</math> | </math> |