6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Screen Shot 2022-09-28 at 4.31.18 PM.png|right|450px|]]
<math>
<math>
\begin{align}
\begin{align}
Line 4: Line 6:
& \color{red}\mathbf{y=\tan(x)}  
& \color{red}\mathbf{y=\tan(x)}  
& \color{royalblue}\mathbf{y= 2\sin(x)} \\
& \color{royalblue}\mathbf{y= 2\sin(x)} \\
& x=-3  
& x=-\frac{\pi}{3}
& x=3 \\
& x=\frac{\pi}{3} \\
 
\end{align}
</math>
 
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx </math>
 
<math>
\begin{align}
\tan(x) &= 2\sin(x) \\
\tan(x)-2\sin(x) &= 0 \\
x &= 0 \\
 
\end{align}
</math>
 
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = 2-\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-2+4 = -2\ln(2)+2</math>
 
 
<math>
\begin{align}
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex]
 
&= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]
 
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]
 
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex]
 
&= 2-\ln(2)-1
 
\end{align}
</math>
 
 
<math>
\begin{align}
 
\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
&= \left[-2\cos(x)-\ln|\sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|\sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|\sec(0)|\right] \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex]
&= -1-\ln(2)+2
 
\end{align}
</math>
 
<math>\text{Note: } \int\tan(x)dx=\int\frac{\sin(x)}{\cos(x)}dx=\ln|\sec(x)|+C</math>
 
<math>
\begin{align}
 
u &= \cos(x) \\[2ex]
du &= -\sin(x) \\[2ex]
-du &= \sin(x)dx
 
\end{align}
</math>
 
<math>
\begin{align}
 
-\int (\frac{1}{u})dx
&= -\ln|u|+C
&=\ln|\cos(x)^{-1}|+C
&=\ln|\frac{1}{cos(x)}|+C
&=\ln|\sec(x)|+C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 23:34, 28 September 2022

Screen Shot 2022-09-28 at 4.31.18 PM.png