6.1 Areas Between Curves/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Screen Shot 2022-09-28 at 4.31.18 PM.png|right|450px|]]
<math>
<math>
\begin{align}
\begin{align}
Line 21: Line 23:
</math>
</math>


<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math>
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx  = 2-\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-2+4 = -2\ln(2)+2</math>




Line 28: Line 30:
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex]
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex]


&= \left[\ln(\secx)+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]
&= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex]


&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex]


&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex]
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex]


&= \frac{14}{3}
&= 2-\ln(2)-1


\end{align}
\end{align}
Line 43: Line 45:
\begin{align}
\begin{align}


\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex]
\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex]
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex]
&= \left[-2\cos(x)-\ln|\sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex]
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex]
&= \left[-2\cos(\frac{\pi}{3})-\ln|\sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|\sec(0)|\right] \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]
&= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex]
&= \frac{64}{3}
&= -1-\ln(2)+2


\end{align}
\end{align}

Latest revision as of 23:34, 28 September 2022

Screen Shot 2022-09-28 at 4.31.18 PM.png