6.1 Areas Between Curves/15: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[File:Screen Shot 2022-09-28 at 4.31.18 PM.png|right|450px|]] | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
Line 21: | Line 23: | ||
</math> | </math> | ||
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = - | <math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = 2-\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-2+4 = -2\ln(2)+2</math> | ||
Line 32: | Line 34: | ||
&= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex] | &= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex] | ||
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = - | &= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex] | ||
&= - | &= 2-\ln(2)-1 | ||
\end{align} | \end{align} |