5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
17)<math>\int_{}^{}1+tan^2xdx</math> = | 17)<math>\int_{}^{}1+tan^2xdx</math> = | ||
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | ||
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> | <math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus, | ||
<math>\int_{}^{}\frac{1}{cos^2x}dx</math> = | <math>\int_{}^{}\frac{1}{cos^2x}dx</math> = | ||