5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  


<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus,  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math>  
 
<math>\cos^2x+sin^2x=1</math> thus,  


<math>\int_{}^{}\frac{1}{cos^2x}dx</math> =  
<math>\int_{}^{}\frac{1}{cos^2x}dx</math> =  


<math>\int_{}^{}\sec^2xdx</math>
<math>tanx+C</math>


[[5.3 The Fundamental Theorem of Calculus/1|1]]
[[5.3 The Fundamental Theorem of Calculus/1|1]]

Revision as of 07:14, 29 August 2022

17) =

=

thus,

=

1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53