5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | ||
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus, | <math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> | ||
<math>\cos^2x+sin^2x=1</math> thus, | |||
<math>\int_{}^{}\frac{1}{cos^2x}dx</math> = | <math>\int_{}^{}\frac{1}{cos^2x}dx</math> = | ||
<math>\int_{}^{}\sec^2xdx</math> | |||
<math>tanx+C</math> | |||
[[5.3 The Fundamental Theorem of Calculus/1|1]] | [[5.3 The Fundamental Theorem of Calculus/1|1]] |