5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


& \int_{-2}^{2}({3u+1})^2 du \\[2ex]
& \int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex]
 
&= \int {3u^2+6u+1} {du} \\[2ex]


&= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
&= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]

Revision as of 17:38, 7 September 2022