6.2 Trigonometric Functions: Unit Circle Approach/47: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}


& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \\[2ex]
& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3} =  \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 20:59, 1 September 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex] \cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{1}{-\frac{1}{2}} \cdot{2} = -\frac{2}{1} = -2 \\[2ex] \tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3} & \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3} = \\[2ex] \end{align} }