6.2 Trigonometric Functions: Unit Circle Approach/47: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 10: Line 10:
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}


& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3}} =  \\[2ex]
& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3}} = -\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 21:00, 1 September 2022