6.2 Trigonometric Functions: Unit Circle Approach/47: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3} | \tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3} | ||
& \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3}} = \\[2ex] | & \cot{\left(\frac{2\pi}{3}\right)} &= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \cdot{\sqrt{3}} = -\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 21:00, 1 September 2022