5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
No edit summary Tag: Manual revert |
||
Line 4: | Line 4: | ||
\int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex] | \int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex] | ||
= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex] | |||
= {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex] | |||
= {52} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:42, 7 September 2022