5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex]
\int_{-2}^{2}({3u+1})^2 du \\[2ex] &= \int {3u^2+6u+1} {du} \\[2ex]


&= {3u^3+3u^2+u}\bigg|_{-2}^{2} = {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} = {52}  
&= {3u^3+3u^2+u}\bigg|_{-2}^{2} = {3\cdot 2^3 + \cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} = {52}  

Revision as of 17:44, 7 September 2022